Объ одномъ обобщении теоремы Абеля

Д. Мордухай-Болтовскаго.

§ 1. Пусть

$$F(z, u) = 0$$

неприводимое уравнение той степени алгебраической кривой.

Пересъчемъ эту кривую другой алгебраической кривой, въ ур неніи которой степени n

$$\Phi(z, u, a_1, a_2, \dots, a_k) = 0$$

коэффиціенты радіональныя функціи нѣкотораго числа перемѣнны параметровъ a_1, a_2, \dots, a_k .

Исключеніе и изъ уравненій (1) и (2) даетъ уравненіе

$$\Omega(z, a_1, a_2, \dots, a_k) = 0,$$

опредъляющее значеніе z для точекъ пересъченія упомянутыхъ кр выхъ, въ которомъ коэффиціенты будутъ также раціональными фунціями отъ a_1, a_2, \ldots, a_k .

Значенія z, u для точекъ пересѣченія, число которыхъ рав mn, будемъ обозначать черезъ

$$(z_1, u_1), (z_2, u_2), \ldots, (z_{mn}, u_{mn}).$$

Если R(z, u) раціональная функція z, u, а слвдовательно

$$J(z, u) = \int_{(z_0, u_0)}^{(z, u)} R(z, u) dz$$

Абелевъ интегралъ, относящійся къ кривой (1), то по теоремѣ Абеля въ ея обобщенномъ видѣ *):

Сумма

$$J = \sum_{i=1}^{i=mn} \int_{(z_0, u_0)}^{(s_i, u_i)} R(z, u) dz$$
 (4)

равна суммѣ раціональной функціи параметровъ a_1, a_2, \dots, a_k и линейной функціи съ постоянными коэффиціентами логариемовъ раціональныхъ функцій тѣхъ же параметровъ.

Предположимъ теперь, что въ области (a_1, a_2, \dots, a_k) уравненіе (3) импримитивно, т. е. предположимъ, что корни этого уравненія удовлетворяютъ неприводимому въ области $(\xi, a_1, a_2, \dots, a_k)$ уравненію

$$\Psi(z, \xi_1, a_1, a_2, \dots, a_k) = 0$$
 (5)

степени s, гдѣ ξ удовлетворяетъ неприводимому въ области (a_1, a_2, \dots, a_k) уравненію

$$\Theta\left(\xi, a_1, a_2, \dots, a_k\right) = 0 \tag{6}$$

степени $s = \frac{mn}{r}$.

Соотвѣтственно различнымъ корнямъ уравненія (6) корни уравненія (3) раздѣлятся на s системъ импримитивности по r корней въ каждой.

Обозначимъ черезъ $\xi_1, \xi_2, \dots, \xi_s$ корни уравненія (6). Тогда корни первой системы

$$z_1, \quad z_2, \quad \ldots, \quad z_r$$

будутъ удовлетворять уравненію

$$\Psi(z, \xi_1, a_2, \dots, a_k) = 0,$$
 (7)

второй системы

$$z_{r+1}, z_{r+2}, \ldots, z_{2r}$$

уравненію

$$\Psi(z, \, \xi_2, \, a_1, \, a_2, \, \ldots, a_k) = 0$$

и т. д.

^{*)} Abel. Oeuvres. t. I. Demonstration d'une propriété générale d'une certaine classe de fonctions transcendantes.

Appell et Goursat. Théorie des fonctions algébriques et de leurs intégrales. § 189, p. 416.

Возьмемъ сумму интеграловъ, подобную (4), которую разсматривалъ Абель:

$$J = \sum_{i=1}^{i=r} \int_{(z_0, u_0)}^{(z_i, u_i)} R(z, u) dz,$$

но распространенную не на вс \hbar mn корней уравненія (3), а только на корни, принадлежащіе первой систем \hbar или на соотв \hbar тствующія имъточки перес \hbar ченія кривых \hbar (1) и (2). Сл \hbar дуя Абелю, находим \hbar полный дифференціал \hbar J относительно a_1, a_2, \ldots, a_k

$$\delta J = \sum_{i=1}^{i=r} R(z_i, u_i) \, \delta z_i, \qquad (8)$$

гдѣ δ знакъ дифференцированія по (a_1, a_2, \dots, a_k) .

Но уравненія (1), (5) и (6) намъ дають:

$$\begin{split} &\delta F(z_i, u_i) = 0,\\ &\delta \Psi(z_i, \xi_1, a_1, a_2, \dots, a_k) = 0,\\ &\delta \Theta(\xi_1, a_1, a_2, \dots, a_k) = 0, \end{split}$$

откуда, обозначая для краткости

$$\begin{split} &F(z_i, u_i) = F_i, \\ &\Psi(z_i, \xi, a_1, a_2, \dots, a_k) = \Psi_i, \\ &\Theta(\xi_1, a_1, a_2, \dots, a_k) = \Theta_1, \end{split}$$

имъемъ

$$\begin{split} \frac{\partial F_i}{\partial z_i} \, \delta z_i + \frac{\partial F_i}{\partial u_i} \delta u_i &= 0, \\ \frac{\partial \varPsi_i}{\partial z_i} \, \delta z_i + \frac{\partial \varPsi_i}{\partial u_i} \, \delta u_i + \frac{\partial \varPsi_i}{\partial \xi_1} \, \delta \xi_1 + \sum_{j=1}^{j=k} \frac{\partial \varPsi_i}{\partial u_j} \, \delta u_j &= 0 \,, \\ \frac{\partial \Theta_1}{\partial \xi_1} \, \delta \xi_1 + \sum_{i=1}^{j=k} \frac{\partial \Theta_1}{\partial a_j} \, \delta u_j &= 0 \,. \end{split}$$

Изъ этой системы линейныхъ относительно δz_i , δu_i , $\delta \xi_1$ уравненій получаемъ

$$\delta z_i = \frac{\frac{\partial F_i}{\partial u_i} \sum\limits_{j=1}^{j=k} \frac{\partial \left(\Theta_1, \, \varPsi_i\right)}{\partial \left(\xi_1, \, a_j\right)} \, \delta a_j}{\frac{\partial \Theta_1}{\partial \xi_1} \, \cdot \, \frac{\partial \left(F_i, \, \varPsi_i\right)}{\partial \left(z_i, \, u_i\right)}} =$$

$$= \sum_{i=1}^{j=k} Q_j(z_i, u_i, \xi_1, a_1, a_2, \dots, a_k) \, \delta a_j,$$

гдѣ $Q(z_i, u_i, \xi_1, a_1, a_2, \ldots, a_k)$ раціональная функція $z_i, u_i, \xi_1, a_1, a_2, \ldots, a_k$. Подставляя это выраженіе вмѣсто dz_i въ выраженіе (8), получаемъ:

$$\delta J = \sum_{i=1}^{j=k} \sum_{i=1}^{i=r} Q_j(z_i, u_i, \xi_1, a_1, a_2, \dots, a_k) R(z_i, u_i) \delta a_j,$$

$$\delta J = \sum_{i=1}^{j=k} P_j(z_1, z_2, \dots, z_r, u_1, u_2, \dots, u_r, \xi_1, a_1, a_2, \dots, a_k) \, \delta a_j,$$

гдѣ P_j раціональная функція z_1 , z_2 , ..., z_r , u_1 , u_2 , ..., u_r , ξ_1 , a_1 , a_2 , ..., a_k и кромѣ того симметрическая функція паръ (z_1, u_1) , (z_2, u_2) , ..., (z_r, u_r) . Вслѣдствіе предполагаемой неприводимости уравненіе (5), а слѣдовательно и (3), кратныхъ корней не имѣють, а потому

$$u_i = \omega(z_i, a_1, a_2, \dots, a_k), \qquad (9)$$

гдѣ ω раціональная функція z_i , a_1 , a_2 , . . . , a_k , общая для всѣхъ значеній значка i.

Подставляя это выраженіе u_i въ функцію P_j , мы приводимъ эту функцію къ симметрической функціи только отъ z_1, z_2, \dots, z_r , раціональной относительно $z_1, z_2, \dots, z_r, \, \xi_1, \, a_1, \, a_2, \dots, a_k$, а пользуясь уравненіемъ (7), приводимъ ее къ раціональной функціи $\xi, \, a_1, \, a_2, \dots, a_k$:

$$\Pi_i(\xi_1, a_1, a_2, \ldots, a_k).$$

Такимъ образомъ

$$\delta J = \sum_{j=1}^{j=k} \Pi_j(\xi_1, a_1, a_2, \dots, a_k) \, \delta a_j.$$

Откуда, обозначая черезъ $a_1^{(0)}, a_2^{(0)}, \dots, a_k^{(0)}$ частныя значенія a_1, a_2, \dots, a_k и черезъ $\xi_1^{(1)}$ значеніе ξ_1 при $a_1 = a_1^{(0)}$, черезъ $\xi_1^{(2)}$ значе-

ніе $ilde{\xi}_1$ при $a_1=a_1^{(0)}$ и при $a_2=a_2^{(0)}$ и т. д., черезъ $\xi_1^{(k-1)}$ значеніе $\hat{\xi}_1$ при $a_1=a_1^{(0)}$, $a_2=a_2^{(0)},\dots,a_{k-1}=a_{k-1}^{(0)}$, получимъ:

$$J = \int_{a_1^{(0)}}^{a_1} \Pi_1(\xi_1, a_1, a_2, \dots, a_k) da_1 + \int_{a_2^{(0)}}^{a_2} \Pi_2(\xi_1^{(1)}, a_1^{(0)}, a_2, \dots, a_k) da_2 +$$

$$+ \int_{a_2^{(0)}}^{a_3} \Pi_3(\xi_1^{(2)}, a_1^{(0)}, a_2^{(0)}, a_3, \dots, a_k) da_3 + \dots +$$

$$+ \int_{a_k^{(0)}}^{a_k} \Pi_k(\xi_1^{(k-1)}, a_1^{(0)}, a_2^{(0)}, \dots, a_{k-1}^{(0)}, a_k) da_k + C,$$

$$(10)$$

гдѣ постоянная C функція (z_0, u_0) .

Такимъ образомъ сумма

$$J = \sum_{i=1}^{i=r} \int_{(z_0 u_0)}^{(z_i u_i)} R(z, u) dz$$

не выражается вообще черезъ алгебраическія функціи и логариомы алгебраическихъ функцій параметровъ, но выражается черезъ сумму функцій отъ a_1, a_2, \dots, a_k , изъ которыхъ каждая опредѣляется Абелевымъ интеграломъ

$$\int H(\xi,a)\,da\,,$$

зависящимъ отъ уравненія s-ой относительно ξ степени, т. е. равной числу системъ импримитивности уравненія (3), опредъляющаго значенія z, одной изъ координатъ точекъ пересъченія кривыхъ (1) и (2).

Если корни уравненія (3) дѣлятся на двѣ системы импримитивности, т.е. уравненіе (6) второй степени относительно ξ , то въ лѣвую часть уравненія (10) будутъ входить только ультраэллиптическіе интегралы.

Если же уравненіе (6) первой степени, то получаемъ случай Абелевой теоремы, такъ какъ тогда § выражается раціонально черезъ а.

§ 2. Оставляя въ сторонъ этоть слишкомъ общій случай, мы останавливаемся на частномъ, на нашъ взглядъ наиболье интересномъ.

Возьмемъ семейство кривыхъ, опредъляемыхъ алгебраическими уравненіями:

$$\varphi(z, u) + \lambda \psi(z, u) + \mu \chi(z, u) = 0, \qquad (11)$$

степени n, относительно (z, u), и

$$\Theta\left(\lambda,\,\mu\right) = 0\,,\tag{12}$$

степени n_2 относительно μ , при чемъ мы предполагаемъ, что во второмъ уравненіи $\Theta(\lambda,\mu)$ не разлагается на множители, кривая опредъляемая этимъ уравненіемъ не разлагается на кривыя нисшихъ порядковъ.

Исключая μ изъ уравненій (11) и (12), получаемъ уравненіе $n_1 n_2$ -ой степени:

$$\Phi(z, u, \lambda) = 0, \tag{13}$$

солержащее одинъ перемънный параметръ д.

Исключая u изъ уравненій (1) и (13), получаемъ уравненіе mn, n_0 -ой степени:

$$\Omega(z,\lambda) = 0. \tag{14}$$

Можно доказать, что это уравненіе въ томъ случав, когда для точекъ пересвченія кривыхъ (1) и (13) одновременно не обращаются въ нуль функціи $\varphi(z,u)$, $\psi(z,u)$, $\chi(z,u)$, уравненіе импримитивное, какъ уравненіе (3), разсмотрынное въ § 1.

Замѣтимъ прежде всего, что уравненіе (14) можно получить такимъ образомъ.

Составляемъ произведение функцій

гдѣ $u^{(1)}, u^{(2)}, \dots, u^{(m)}$ различныя значенія u, опредѣляемыя уравненіемъ (1). Произведеніе это

$$\prod_{i=1}^{i=m} [\varphi(z, u^{(i)}) + \lambda \psi(z, u^{(i)}) + \mu \chi(z, u^{(i)})],$$

будучи функціей симметрической относительно $u^{(1)}, u^{(2)}, \dots, u^{(m)}$, будеть равно раціональной функціи z, λ, μ , которую означимъ черезъ $\Psi(z, \lambda, \mu)$.

Такимъ образомъ для точекъ пересъченія мы будемъ имъть:

$$\Psi(z, \lambda, \mu) = 0. \tag{15}$$

Намъ остается только исключить μ при помощи уравненія

$$\Theta\left(\lambda,\,\mu\right) = 0. \tag{12}$$

Теперь докажемъ, что при сдѣланномъ предположеніи относительно функцій $\varphi(z,u)$, $\psi(z,u)$, $\chi(z,u)$ уравненіе (15) будетъ неприводимо въ области (λ,μ) .

Предположимъ, что имѣетъ мѣсто противное, что для всѣхъ значеній γ , μ

$$\Psi(z, \lambda, \mu) = \Psi_1(z, \lambda, \mu) \Psi_2(z, \lambda, \mu) \dots \Psi_k(z, \lambda, \mu).$$

Замътимъ, что неприводимые множители $\Psi(z,\lambda,\mu)$ функціи цълыя относительно z,λ,μ , можно считать тоже цълыми функціями λ,μ , ибо въ противномъ случаъ, приводя въ нихъ всъ коэффиціенты при степеняхъ z къ одному знаменателю, имъли бы:

$$\Psi(z,\lambda,\mu) = \frac{\Psi_1(z,\lambda,\mu) \, \Psi_2(z,\lambda,\mu) \dots \, \Psi_k(z,\lambda,\mu)}{f(\lambda,\mu)},$$

откуда $f(\lambda, \mu) =$ постоянному.

Разсматриваемая, какъ функція цѣлая λ , μ , $\Psi_1(z,\lambda,\mu)$ должна или вовсе не содержать λ , μ , или дѣлиться на одинъ изъ множителей,

$$\varphi(z, u^{(i)}) + \lambda \psi(z, u^{(i)}) + \mu \chi(z, u^{(i)})$$

функціи $\Psi(z,\lambda,\mu)$.

Исключая пока первый случай, когда

$$\Psi_{1}(z,\lambda,\mu) = \Psi_{1}(z), \tag{16}$$

т. е. функція $\Psi(z,\lambda,\mu)$ содержить множитель независящій оть λ,μ , мы должны представить $\Psi_1(z,\lambda,\mu)$ въ слѣдующей формѣ:

$$\Psi_{1}(z,\lambda,\mu) = \omega_{1}(z,u^{(1)},u^{(2)},\ldots,u^{(k)}) \prod_{i=1}^{i=l} [\varphi(z,u^{(i)}) + \lambda \psi(z,u^{(i)}) + \mu \chi(z,u^{(i)})].$$

Можно доказать, что l = m.

Положимъ l < m. Обозначая коэффиціентъ при $\lambda^{\alpha}\mu^{\beta}$ по разложеніи произведенія въ правой части черезъ $\eta_{\alpha\beta}(z,u^{(1)},u^{(2)},\ldots,u^{(l)})$, а черезъ $\eta_{\gamma\delta}(z,u^{(1)},u^{(2)},\ldots,u^{(l)})$ коэффиціентъ при $\lambda^{\gamma}\mu^{\delta}$, замѣтимъ, что функціи

$$\eta_{\alpha\beta}(z, u^{(1)}, u^{(2)}, \dots, u^{(l)}) \omega_1(z, u^{(1)}, u^{(2)}, \dots, u^{(k)}),$$

$$\eta_{\gamma\delta}(z, u^{(1)}, u^{(2)}, \dots, u^{(l)}) \omega_1(z, u^{(1)}, u^{(2)}, \dots, u^{(k)}),$$

какъ равныя коэффиціентамъ при $\lambda^{\alpha}\mu^{\lambda}$ и $\lambda^{\gamma}\mu^{\delta}$ въ $\Psi_{1}(z,\lambda,\mu)$, должны приводиться къ функціи отъ z, и тоже относится къ ихъ частному:

$$\frac{\eta_{\alpha\lambda}(z, u^{(1)}, u^{(2)}, \dots, u^{(l)})}{\eta_{\gamma\delta}(z, u^{(1)}, u^{(2)}, \dots, u^{(l)})} = \eta(z, u^{(1)}, u^{(2)}, \dots, u^{(l)}).$$

Но при неприводимости уравненія (1) это можеть быть лишь въ въ томъ случаї, когда въ η входять не только $u^{(1)}, u^{(2)}, \dots, u^{(l)}$, но и $u^{(l+1)}, \dots, u^{(m)}$, т. е. когда l=m, противно предположенію.

Если же l=m, то $\Psi_1(z,\lambda,\mu)$ дёлится на $\Psi(z,\lambda,\mu)$; тогда им'вемъ

$$\omega_1(z, u^{(1)}, u^{(2)}, \dots, u^{(k)}) = 1,$$

$$\Psi_1(z, \lambda, \mu) = \Psi(z, \lambda, \mu),$$

и уравненіе (15) противно допущенію неприводимо.

Остается только разсмотрѣть случай, исключенный нами, когда

$$\Psi_{1}(z, \lambda, \mu) = \Psi_{1}(z), \qquad (16)$$

т. е. когда уравненіе (15) имѣетъ корни, независящіе отъ λ , μ . Но тогда существуютъ такія значенія z, u, которыя, удовлетворяя уравненію (1), удовлетворяютъ вмѣстѣ съ тѣмъ уравненію

$$\varphi(z, u) + \lambda \psi(z, u) + \mu \chi(z, u) = 0$$

при всѣхъ значеніяхъ λ , μ , или удовлетворяютъ одновременно тремъ уравненіямъ:

$$\varphi(z, u) = 0,$$

$$\psi(z, u) = 0,$$

$$\gamma(z, u) = 0.$$
(17)

Можно еще сказать: точки пересъченія кривыхъ (1) и (13) тогда совпадають съ общими тремъ кривымъ (17) точками, если таковыя у нихъ существуютъ.

Такимъ образомъ, если соблюдено вышеизложенное условіе, то уравненіе

$$\Omega(z,\lambda) = 0 \tag{14}$$

импримитивно, и притомъ число системъ импримитивности равно степени уравненія (12) относительно μ , число же корней въ каждой системѣ равно степени $\Psi(z,\lambda,\mu)$ относительно z, т. $mn_1=r$. Согласно съ вышедоказаннымъ въ § 1 сумма

$$J = \sum_{i=1}^{i=r} \int_{(s_0, u_0)}^{(s_i, u_i)} R(z, u) dz$$

выражается черезъ одинъ Абелевъ интегралъ

$$\int \Pi(\lambda,\mu_1)\,d\lambda\,,$$

если $\mu = \mu_1$ тотъ корень уравненія (12), которому соотв'єтствують корни

$$z_1, z_2, \dots, z_{n,m},$$

которыя, следовательно, удовлетворяють уравненію

$$\Psi(z, \lambda, \mu_1) = 0$$
.

Такимъ образомъ

$$\sum_{i=1}^{i=r} \int_{(z_0, u_0)}^{(s_i, u_i)} R(z, u) dz = \int \Pi(\lambda, \mu_1) d\lambda + C, \qquad (18)$$

гдѣ C независитъ отъ z_i , u_i , а только отъ z_0 , u_0 . Обозначая лѣвую часть этого равенства черезъ $J[z_i,u_i]$ и полагая, что для $\lambda=\lambda'$

$$z_1 = z_1', \ z_2 = z_2', \dots, z_r = z_r'; \ u_1 = u_1', \ u_2 = u_2', \dots, u_r = u_r',$$

для $\lambda = \lambda''$

$$z_1 = z_1'', \ z_2 = z_2'', \dots, z_r = z_r''; \quad u_1 = u_1'', \ u_2 = u_2'', \dots, u_r = u_r'',$$

а слѣдовательно

$$\sum_{i=1}^{i=r} \int_{\langle \mathbf{z}_i',\,\mathbf{u}_i''\rangle}^{\langle \mathbf{z}_i'',\,\mathbf{u}_i''\rangle} R\left(\mathbf{z}_1\,\mathbf{u}\right) d\mathbf{z} = J[\mathbf{z}_i'',\,\mathbf{u}_i''] - J[\mathbf{z}_i',\,\mathbf{u}_i'],$$

выводимъ изъ равенства (18), что

$$\sum_{i=1}^{i=r} \int_{(s_i', u_i')}^{(i_i'', u_i'')} R(z, u) dz = \int_{(\lambda', \mu')}^{(\lambda'', \mu'')} \Pi(\lambda, \mu_1) d\lambda.$$
 (19)

Интегралъ $\int \Pi(\lambda,\mu) \, d\lambda$ относится къ кривой $\Theta(\lambda,\mu) = 0$, которую мы можемъ задавать произвольно съ однимъ условіемъ, чтобы эта кривая не разлагалась на кривыя нисшаго порядка. Въ случаѣ, если это уравненіе первой степени относительно μ и λ :

$$\alpha\lambda + \beta\mu = \gamma$$
,

то уравненіе

$$\Phi(z, u, \lambda) = 0 \tag{13}$$

будетъ типа

$$\Phi_{1}(z, u) + \lambda \Phi_{2}(z, u) = 0$$

т. е. уравненіемъ пучка кривыхъ, и теорема даетъ извѣстный случай Абелевой теоремы *).

Сумма J будетъ выражаться черезъ алгебраическія функціи параметра λ и логариемы алгебраическихъ функцій, а слѣдовательно и черезъ алгебраическія и логариемы алгебраическихъ функцій (z_1, u_1) , $(z_2, u_2), \ldots, (z_r, u_r)$ и въ томъ случаѣ, когда уравненіе (12) будетъ такое:

$$\alpha \lambda^2 + 2\beta \lambda \mu + \gamma \mu^2 + \delta \lambda + \varepsilon \mu + \zeta = 0$$
.

Когда же уравненіе (12) будеть четвертой степени относительно λ и второй относительно μ , напримѣръ

$$\mu^2 = (1 - \lambda^2) (1 - k^2 \lambda^2). \tag{20}$$

то получаемъ выраженіе суммы Абелевыхъ интеграловъ черезъ одинъ эллиптическій интегралъ.

Мы могли бы возпроизвести все доказательство § 1, примѣняясь къ изслѣдуемому частному случаю, при которомъ должны были бы выразить δz . въ функціи z., u., λ , μ и $\delta \lambda$ изъ уравненій:

$$\begin{split} \delta \varPhi_i &= \frac{\partial \varphi_i}{\partial z_i} \delta z_i + \frac{\partial \varphi_i}{\partial u_i} \delta u_i + \left(\frac{\partial \psi_i}{\partial z_i} \delta z_i + \frac{\partial \psi_i}{\partial u_i} \delta u_i \right) \lambda + \\ &\quad + \left(\frac{\partial \chi_i}{\partial z_i} \delta z_i + \frac{\partial \chi_i}{\partial u_i} \delta u_i \right) \mu_1 + \psi_i \delta \lambda + \chi_i \delta \mu_1 = 0 \\ \delta F_i &= \frac{\partial F_i}{\partial z_i} \delta z_i + \frac{\partial F_i}{\partial u_i} \delta u_i = 0 \\ \delta \Theta_1 &= \frac{\partial \Theta_1}{\partial \lambda} \delta \lambda + \frac{\partial \Theta_1}{\partial \mu_1} \delta \mu_1 = 0. \\ \end{split}$$
 Откуда

 $\delta z_{i} = \frac{\left(\psi_{i} \frac{\partial \Theta_{1}}{\partial \mu_{1}} - \chi_{i} \frac{\partial \Theta_{1}}{\partial \lambda_{1}}\right) \frac{\partial F_{i}}{\partial u_{i}}}{\Delta \frac{\partial \Theta_{1}}{\partial \mu_{1}}} \delta \lambda,$

^{*)} Appell et Goursat. p. 418.

гдѣ

$$\label{eq:delta_interpolation} \varDelta(\mathbf{z_i},\ \mathbf{u_i}) = \frac{\partial(F_i,\ \varphi_i)}{\partial(\mathbf{z_i},\ \mathbf{u_i})} + \frac{\partial(F_i,\ \psi_i)}{\partial(\mathbf{z_i},\ \mathbf{u_i})} \lambda + \frac{\partial(F_i,\ \chi_i)}{\partial(\mathbf{z_i},\ \mathbf{u_i})} \mu_1.$$

Функція, обозначенная въ \S 1 черезъ P_j , въ настоящемъ случав выражается слѣдующимъ образомъ:

$$=\frac{\frac{\partial \Theta(\lambda,\,\mu_1)}{\partial \mu_1} \sum_{i=1}^{i=r} \frac{R(z_i,\,u_i) \ \psi(z_i,\,u_i)}{\Delta(z_i,\,u_i)} - \frac{\frac{\partial \Theta(\lambda,\,\mu_1)}{\partial \lambda} \sum_{i=1}^{i=r} \frac{R(z_i,\,u_i) \ \chi(z_i,\,u_i)}{\Delta(z_i,\,u_i)}}{\frac{\partial \Theta(\lambda,\,\mu_1)}{\partial \mu_1} : \frac{\partial F(z_i,\,u_i)}{\partial u_i}}.$$

§ 3. Если Абелевъ интегралъ

$$J = \int_{(z_i', u_i')}^{(z_i'', u_i'')} R(z, u) dz$$

перваго рода, т. е. конеченъ при всякомъ положеніи точекъ (z_i^r, u_i^r) , то интеграль во второй части равенства (19) будетъ тоже перваго рода.

Въ самомъ дълъ, предположимъ обратное, что интегралъ

$$\int_{(\lambda',\,\mu')}^{(\lambda'',\,\mu'')} H(\lambda,\,\mu_1)\,d\lambda$$

обращается въ безконечность при $\lambda'' = \lambda^{(0)}$, мы должны предположить, что при этомъ значеніи λ одинъ изъ интеграловъ лѣвой части уравненія (19) тоже обращается въ безконечность, что противно условію.

Если возьмемъ случай уравненія (20), получимъ, что

$$\sum_{i=1}^{i=r} \int_{(z_i', u_i')}^{(z_i'', u_i'')} R(z, u) dz = A \int_{(\lambda'', \mu'')}^{(\lambda'', \mu'')} \frac{d\lambda}{\sqrt{(1 - \lambda^2)(1 - k^2 \lambda^2)}}$$
(21)

гдѣ А постоянное,

$$(z'_1, u'_1), (z'_2, u'_2), \ldots, (z'_i, u'_i)$$

удовлетворяютъ уравненію

$$\varphi(z, u) + \lambda' \psi(z, u) + \chi(z, u) \sqrt{(1 - \lambda'^{2})(1 - \overline{k^{2}\lambda'^{2}})} = 0,$$

$$(z''_{1}, u''_{1}), (z''_{2}, u''_{2}), \dots, (z''_{i}, u''_{i})$$

уравненію

$$\varphi(z,u) + \lambda'' \psi(z,u) + \chi(z,u) \sqrt{(1-\lambda''^2)(-k^2\lambda''^2)} = 0.$$

Возьмемъ для интеграла перваго рода обычную для него форму:

$$\begin{split} &\int_{(z_i',\mu_i')}^{(z_i'',u_i'')} R\left(z,u\right) dz = \int_{(z_i',\mu_i')}^{(z_i'',u_i'')} \frac{Q\left(z,u\right)}{F_u'\left(z,u\right)} dz \\ &\int_{(\lambda',\mu')}^{(\lambda'',\mu'')} \Pi\left(\lambda,\mu_1\right) d\lambda = \int_{(\lambda',\mu')}^{(\lambda'',\mu'')} \frac{N(\lambda,\mu_1)}{\Theta_{\mu_1}'(\lambda,\mu_1)} d\lambda \end{split}$$

гдѣ Q(z,u) цѣлая функція m—3-ей степени отъ $z,u,\ N(\lambda,\mu_1)$ цѣлая функція n_2 —3-ой степени отъ λ , μ .

Равенство (19) для этого случая напишется такъ:

$$\sum_{i=1}^{i=r} \int_{(z'_{i}, u'_{i})}^{(z''_{i}, u''_{i})} \frac{Q(z_{1} u)}{F'_{u}(z, u)} dz = \int_{(\lambda', \mu')}^{(\lambda'', \mu'')} \frac{N(\lambda, \mu_{1})}{\Theta'_{\mu_{1}}(\lambda, \mu_{1})} d\lambda.$$
 (22)

§ 4. Мы сдълаемъ еще одно очень важное замъчаніе, касающееся условія неприводимости уравненія (5) въ § 1 и (14) въ § 2.

Въ нашихъ разсужденіяхъ мы вездѣ предполагали, что уравненіе

$$\Psi(z, \xi, a_1, a_2, \dots, a_k) = 0 \tag{5}$$

а слѣдовательно и

$$\Omega(z, a_1, a_2, \dots, a_k) = 0 \tag{3}$$

неприводимы, т. е. \mathcal{Q} не разлагается на множители $\mathcal{Q}_1,\,\mathcal{Q}_2,\ldots,\mathcal{Q}_k$ раціональные относительно $a_1,\,a_2,\ldots,a_k$. Но существуеть одинь случай, когда не смотря на приводимость $\mathcal{\Psi}$ и \mathcal{Q} теорема § 1 имѣеть мѣсто. Это тоть случай, когда $\mathcal{\Psi}$ разлагается на множитель $\mathcal{\Psi}_1(z)$ независящій оть \vdots , $a_1,\,a_2,\ldots,a_k$ и другой неприводимый множитель $\mathcal{\Psi}_2(z,\,\xi,\,a_1,\,a_2,\ldots,a_k)$, такь что

$$\Psi(z, \xi, a_1, a_2, \dots, a_k) = \Psi_1(z) \Psi_2(z, \xi, a_1, a_2, \dots, a_k).$$
 (23)

Тогда къ уравненію

$$\Psi_2(z, \xi, a_1, a_2, \dots, a_k) = 0$$
 (24)

мы можемъ приложить всф разсужденія, которыя прилагались къ

$$\Psi(z, \xi, a_1, a_2, \dots, a_k) = 0, \qquad (5)$$

такъ какъ: во первыхъ корни уравненія (24) удовлетворяютъ импримитивному уравненію

$$\frac{\mathcal{Q}(z, a_1, a_2, \dots, a_k)}{\Psi_1(z)} = \mathcal{Q}_1(z, a_1, a_2, \dots, a_k) = 0;$$
 (25)

во вторыхъ, такъ какъ это уравненіе неприводимо, ни одинъ изъ корней его не будетъ кратнымъ, и u_1, u_2, \dots, u_q , соотвѣтствующіе корнямъ z_1, z_2, \dots, z_q уравненія (25), выразятся раціонально (9) въ послѣднихъ; а на этихъ пунктахъ и основывается все доказательство § 1.

Такимъ образомъ и къ суммъ

$$\sum_{i=1}^{i=q} \int_{(z_0,u_0)}^{(si,u_i)} R(z,u) dz$$

примънима теорема § 1.

Но такъ какъ корни уравненія

$$\Psi_1(z) = 0$$

не зависять отъ a_1, a_2, \dots, a_k , то прибавление къ суммъ

$$\sum_{i=1}^{i=q} \int_{(z_0, u_0)}^{(s_i, u_i)} R(z, u) dz = \int II(\lambda, \mu_1) d\lambda + C$$
 (26)

суммы

$$\sum_{i=q+1}^{i=r} \int_{(z_0, u_0)}^{(z_i, u_i)} R(z, u) dz$$

гдѣ $z_{q+1}, z_{q+2}, \ldots, z_r$ корни уравненія $\psi_1(z) = 0$, равносильно прибавленію къ правой части равенства (26) постояннаго, такъ что послѣднее имѣетъ мѣсто и въ томъ случаѣ, когда лѣвая часть уравненія (3) или (5) содержитъ множитель $\Psi_1(z)$.

Это же замѣчаніе относится и къ случаю кривой (13), т. е. $\Psi(z, \lambda, \mu)$ можетъ содержать множитель независящій отъ $\lambda, \mu, -\Psi_1(z)$.

Но тогда, какъ мы выше въ § 2 показали, существуютъ точки пересъченія двухъ кривыхъ (1) и (13), лежащія въ общихъ тремъ кривымъ

$$\varphi(z, u) = 0$$

$$\psi(z, u) = 0$$

$$\chi(z, u) = 0$$
(17)

точкахъ. Обратно, если существуютъ общія тремъ кривымъ (17) точки, и съ этими точками совпадаютъ нѣкоторыя точки пересѣченія кривыхъ (1) и (13), то $\Psi(z,\lambda,\mu)$ содержитъ множитель $\Psi_1(z)$, независящій отъ λ , μ . Въ самомъ дѣлѣ, тогда уравненія (1) и (13) имѣютъ общія рѣшенія независящія отъ λ , μ , и тоже относится къ $\Psi(z,\lambda,\mu)$ =0.

Замѣтимъ также, что въ лѣвой части равенства (19), представляющаго слѣдствіе (18), всѣ члены, относящіеся къ корнямъ уравненія $\Psi_1(z)$ равны нулю, и оно можетъ быть представлено въ слѣдующемъ видѣ:

$$\sum_{i=1}^{i=q} \int_{(z_0, u_0)}^{(z_i'', u_i'')} R(z, u) dz = \int_{(\lambda', \mu')}^{(\lambda'', \mu'')} \Pi(\lambda, \mu_1) d\lambda + \sum_{i=1}^{i=q} \int_{z_0, u_0)}^{(z_i', u_i')} R(z, u) dz. \quad (27)$$

§ 5. Предположимъ, что уравненіе

$$\Theta(\lambda, \mu) = 0 \tag{12}$$

таково, что при

$$\lambda = 0 \qquad \mu_1 = 0 \tag{28}$$

такъ, что при $\lambda = 0$

$$\varphi(z, u) + \lambda \psi(z, u) + \mu_1 \chi(z, u) = \varphi(z, u),$$

и затъмъ предположимъ, что функціи $\varphi(z,u),\ \psi(z,u),\ \chi(z,u)$ $n_1=m-2$ -ой степени.

Мы можемъ, какъ извъстно опредълить коэффиціенты функціи $\varphi(z,u)$ такъ, что она будетъ имѣть mn_1-p *) напередъ заданныхъ нулей [или точекъ пересъченія кривыхъ F(z,u)=0 и $\varphi(z,u)=0$], если въ число ихъ включить всѣ двойныя точки кривой (1) числомъ δ . Остальныя p нулей опредълятся, какъ и коэффиціенты, въ видѣ алгебраическихъ функцій ихъ.

При $m \ge 3$, что мы будемъ всегда, конечно, предполагать, вс $\mathfrak b$ нули разд $\mathfrak b$ лимъ на 4 группы:

- I) Произвольно заданныя точки: $(z_1'', u_1''), (z_2'', u_2''), \dots, (z_{p+1}'', u_{p+1}''),$ число которыхъ p+1.
 - II) Другія m-3 произвольно заданныя точки.
- III) δ двойныхъ точекъ F(z,u), считаемыя за 2δ точекъ пересѣченія.
 - IV) p опредѣляемыхъ предыдущими нулей.

Коэффиціенты же $\psi(z,u)$ и $\chi(z,u)$ мы можемъ опредѣлить такъ, чтобы какъ $\psi(z,u)$, такъ и $\chi(z,u)$ имѣли нули общія съ $\varphi(z,u)$, именно принадлежащія IV, III и II группамъ, значитъ числомъ mn_1-p-1 ; мы можемъ слѣдовательно произвольно задать еще одинъ нуль и въ $\psi(z,u)$ и $\chi(z,u)$; такимъ образомъ остается еще по перемѣнному параметру; имъ дадимъ опредѣленныя частныя значенія. Два параметра λ , μ въ функціи

^{*)} гдѣ р родъ кривой (Geschlecht, Rang).

$$\varphi(z,u) + \lambda \psi(z,u) + \mu \chi(z,u), \qquad (29)$$

въ силу уравненія § 2, сводятся къ одному параметру λ ; эта функція тоже имѣеть mn_1-p-1 , общихъ съ $\varphi(z,u)$ нулей, именно, II, III и IV группъ.

Нараметромъ λ распорядимся такъ, чтобы функція (29) имѣла бы еще одинъ произвольно нами задаваемый нуль (z_0, u_0) .

Пусть это значеніе λ есть $\lambda = \lambda'$.

Всѣ точки пересѣченія послѣднихъ трехъ группъ, какъ общія уравненію

$$\varphi(z,u) + \lambda \psi(z,u) + \mu \gamma(z,u) = 0$$

при всѣхъ значеніяхъ λ , μ и, слѣдовательно. опредѣляемыя уравненіемъ

$$\Psi_{1}(z)=0$$
,

не входять ни въ лѣвую, ни въ правую часть равенства (27), и кромѣ того одинъ изъ интеграловъ правой части, соотвѣтствующій точкѣ пересѣченія:

$$z_{i}^{\prime}=z_{0}\,,\qquad u_{i}^{\prime}=u_{0}\,,$$

равенъ нулю.

Итакъ мы имфемъ

$$\sum_{i=1}^{i=\rho+1} \int_{(z_{0},\,u_{0})}^{(z_{i}'',\,u_{i}'')} R\left(z\,,u\right) dz = \int_{(\lambda'\,,\,\mu')}^{(0\,,\,0)} H\left(\lambda\,,\,\mu_{1}\right) d\lambda + \sum_{i=1}^{i=\rho} \int_{(z_{0},\,u_{0})}^{(z_{i}',\,u_{i}')} R\left(z\,,\,u\right) dz.$$

Возьмемъ теперь общій случай кривой

$$\Theta(\lambda,\mu)=0$$
,

когда для

$$\lambda = \lambda''$$

$$\mu_1 = \mu''$$
.

Такую кривую мы можемъ всегда преобразовать къ разсмотрѣнному типу, положивъ:

$$L = \lambda - \lambda''$$
 ,

$$M = \mu_1 - \mu''$$

Пусть уравненіе (12) преобразуется тогда въ слѣдующее

$$T(L, M) = 0;$$

$$\Pi(\lambda,\mu) = \Pi(L,M)$$
,

$$\varphi(z,u) + \lambda \psi(z,u) + \mu, \chi(z,u) = \Phi(z,u) + L\psi(z,u) + M\chi(z,u),$$

гдѣ

$$\varphi(z, u) + \lambda'' \psi(z, u) + \mu'' \chi(z, u) = \Phi(z, u)$$
.

Тогда мы можемъ написать, что

$$\sum_{i=1}^{i=p+1} \int_{(\mathbf{z}_0, \mathbf{u}_0)}^{(\mathbf{z}_i'', \mathbf{u}_i'')} R(\mathbf{z}, \mathbf{u}) \, d\mathbf{z} = \int_{(\lambda', \mu')}^{(\lambda'', \mu'')} \Pi(\lambda, \mu_1) \, d\lambda + \sum_{i=1}^{i=p} \int_{(\mathbf{z}_0, \mathbf{u}_0)}^{(\mathbf{z}_i', \mathbf{u}_i')} R(\mathbf{z}, \mathbf{u}) \, d\mathbf{z}. \tag{30}$$

Отсюда получаемъ, что сумма p+1 значеній Абелева интеграла $J(z_i,\,u_i)$ сводится при помощи Абелева интеграла, относящагося къ произвольно-заданной кривой

$$\Theta(\lambda, \mu) = 0$$
,

къ числу p значеній того же интеграла.

Причемъ какъ предѣлы упомянутаго Абелева интеграла, такъ и значенія (z_i, u_i) для p интеграловъ, къ которымъ сводится p+1 заданныхъ, алгебраическія функціи отъ значеній z_i, u_i для этихъ послѣднихъ.

Теорема о сведеніи p+1 интеграловъ къ p интеграламъ при помощи алгебраическихъ функцій и логариемовъ является частнымъ случаемъ этой теоремы.

Для случая уравненія (20) и случая интеграловъ перваго рода имѣемъ:

$$\sum_{i=1}^{i=p+1} \int_{(z_0, u_0)}^{(z''_i, u''_i)} R(z, u) dz = A \int_{(\lambda', \mu')}^{(\lambda'', \mu'')} \frac{d\lambda}{\sqrt{(1-\lambda^2)(1-k^2\lambda^2)}} + \sum_{i=1}^{i=p} \int_{(z_0, u_0)}^{(z'_i, u'_i)} R(z, u) dz.$$
(31)